MOLECULAR CHARACTERIZATION OF CETACEAN SKIN – LAYING THE FOUNDATION TO DEVELOP CUTANEOUS BIOMARKERS

Julia Zaias, Lulu L Wang, Cheyanne Head, Irena Pastar Marine Animal Rescue Society, Miami, FL University of Miami, Miami, FL

Mesoplodon species – poss Gervais' beaked whale

Cookie cutter shark wounds

Normal Cetacean skin

Skin, thin H&E

stratum corneum

(Bruce-Allen and Geraci, 1985; Can. J. Fish Aquat Sci)

- Basal germinal layer
 - Within 24 hours undergoes increased mitoses, intercellular edema that breaks the intercellular connections, and pseudopodia bearing keratinocytes that move along over exposed dermis to cover skin lesion
- Stratum spinosum
 - 2-3 days, new (edematous) cells formed; span skin lesion; 4-20 cell layers thick
- Stratum externum
 - Incompletely keratinized (retains nuclei; parakeratotic)
 - Completely closed by 3-4 days

At day 7, dermal papillae of relatively uniform size/shape restored.

(Bruce-Allen and Geraci, 1985; Can. J. Fish Aquat Sci)

- Basal germinal layer
 - Within 24 hours undergoes increased mitoses, intercellular edema that breaks the intercellular connections, and pseudopodia bearing keratinocytes that move along over exposed dermis to cover skin lesion
- Stratum spinosum
 - 2-3 days, new (edematous) cells formed; span skin lesion; 4-20 cell layers thick
- Stratum externum
 - Incompletely keratinized (retains nuclei; parakeratotic)
 - Completely closed by 3-4 days

At day 7, dermal papillae of relatively uniform size/shape restored.

(Bruce-Allen and Geraci, 1985; Can. J. Fish Aquat Sci)

- Basal germinal layer
 - Within 24 hours undergoes increased mitoses, intercellular edema that breaks the intercellular connections, and pseudopodia bearing keratinocytes that move along over exposed dermis to cover skin lesion
- Stratum spinosum
 - 2-3 days, new (edematous) cells formed; span skin lesion; 4-20 cell layers thick
- Stratum externum
 - Incompletely keratinized (retains nuclei; parakeratotic)
 - Completely closed by 3-4 days

At day 7, dermal papillae of relatively uniform size/shape restored.

Day 2-3

(Bruce-Allen and Geraci, 1985; Can. J. Fish Aquat Sci)

- Basal germinal layer
 - Within 24 hours undergoes increased mitoses, intercellular edema that breaks the intercellular connections, and pseudopodia bearing keratinocytes that move along over exposed dermis to cover skin lesion
- Stratum spinosum
 - 2-3 days, new (edematous) cells formed; span skin lesion; 4-20 cell layers thick
- Stratum externum
 - Incompletely keratinized (retains nuclei; parakeratotic)
 - Completely closed by 3-4 days

At day 7, dermal papillae of relatively uniform size/shape restored.

Day 3-4

Adipose cells (Fat) – white Smooth muscle – yellow arrowhead - pink in HE (above)

- blue in Trichrome stain (right)

Comparison with human epidermis from non-healing chronic wound

Cetacean lesion

Human non-healing wound

Homology of cetacean with human keratin 5

Distribution of the top 15 Blast Hits on 2 subject sequences

Description	Max score	Total score	Query cover	E value	Ident
Tursiops truncatus isolate MMES2002162SC unplaced genomic scaffold, NIST Tur_tru v1	501	501	41%	5e-139	77%

Histopathology of a human chronic wound: Hyper-proliferation; loss of migration due to nuclear β-catenin

EPIDERMIS OF A HUMAN CHRONIC WOUND

Pastar I et al. Adv Wound Care. 2014.

Activation of the β – catenin Pathway

β-catenin as cutaneous biomarker

• The Wnt pathway

- is important for skin homeostasis contributing to the maintenance/control of stem cells and cellular fate in the epidermal compartments
- Controls ß-catenin activation
- Nuclear presence of β-catenin human tissue specimens is quantifiable by use of immunohistochemistry highlighting their feasibility as a tissue biomarker.

Comparative genomics identified cetacean gene homologous to human β-catenin

Max score Cover Identity

Tursiops truncatus catenin beta 1 (CTNNB1), transcript 3823 100% (96%)

Phosphorylated β -catenin is nuclear in the lesion of cetacean skin

Cetacean lesional skin 2

Cetacean lesional skin 1

Phospho β-catenin DAPI DAPI

Human non-healing wound

Conclusions and future directions

- Strong nuclear β-catenin indicates activation of the skin cells and epidermal stem cells in cetacean skin
- Human keratin protein antibodies and β-catenin antibody nicely cross-react with cetacean skin
- Detailed molecular characterization of normal, acute, and chronic cetacean wounds possible
- Evaluation of skin for biomarker(s) to identify infectious or environmental stressors from dart biopsies

THANK YOU

Thanks to Lulu L Wang, Cheyanne Head, Irena Pastar

Department of Dermatology and Cutaneous Surgery University of Miami, Miami, FL